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Abstract  

The identification of the phase space of N classical identical particles with the equivalence 
class of points is of crucial importance for statistical mechanics. We show that the refined 
phase space leads to the correct statistical mechanics for an ideal gas; moreover, Gibbs's 
paradox is resolved and the Third Law of Thermodynamics is recovered. The presence 
of both induced and stimulated transitions is shown as a consequence of the identity of 
the particles. Other results are the 'quantum' contribution to the second virial coefficient 
and the Bose-Einstein condensation. Photon bunching and Hanbury Brown-Twiss 
effect are also seen to follow from the classical model. The only element of quantum 
theory involved is the notion of phase cells necessary to make the entropy dimensionless. 
Assuming the existence of the light quantum or the phonon hypothesis we could derive 
the Planck distribution law for blackbody radiation or the Debye formula for specific 
heats respectively. 

Classical mechanics idealizes certain objects as particles; thus dust 
particles, billiard balls, apples and automobiles may be considered as 
particles in the appropriate  framework.  In  cosmology,  even galaxies are 
considered as particles 's treaming with the substratum'.  The idealization 
o f  macroscopic objects as point  masses is, in many  cases, only for treating 
their dynamics, and not  to abolish the possibility o f  distinguishing between 
them. For  example, two bullets may be identical in their relevant mechanical 
properties but  distinguishable (since a detective may  have put  his identi- 
fication marks on them);  thus two objects may  be ' identical but  distinguish- 
able'.  For  macroscopic  objects there is never complete identity o f  two 
separate objects, hence identical particles are quite correctly treated as 
distinguishable. 

I f  we extend this consideration to truly elementary objects (microscopic 
in fact, a l though not  necessarily) which are points or collections o f  points, 
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then the identical objects are not only identical but also indistinguishable. 
Two objects such as two classical helium atoms are completely identical 
and indistinguishable; there is no provision for these objects to carry any 
identification marks. The distinguishability has to do with unused struc- 
tures in the objects that are not dynamically relevant (the engine number of 
an automobile does not affect its functioning), and for a system with no 
such redundant structure 'identical' implies 'indistinguishable'. The 
identity of two classical point particles has nothing to do with quantum 
mechanics or the structure of the atom; it is a basic postulate of the physical 
model. 

Phase Space of a Classical System 

Phase space is the theater in which classical Hamiltonian mechanics is 
best represented. The transformations implied by dynamics, mot ions ,  
symmetries, most general propositions, and even stochastic states, are all 
best displayed in phase space. There is probably a lack of precision in the 
concept of phase space for a system of classical particles some of which 
may be identical. If we imagine the coordinates and momenta of two iden- 
tical particles to be interchanged, there is no discernible difference for the 
state. Thus if we are interested only in the dynamical behavior of a system 
of identical particles it would be logical to identify the phase space of the 
classical system not with the 6N-dimensional Euclidean space but with the 
equivalence class of  points of this space, any two points obtained by inter- 
change of the coordinates and momenta of identical particles being con- 
sidered equivalent. This does not reduce the dimensionality of the phase 
space. (In the language of the mathematician, the phase space is not the 
Kronecker product of the phase spaces of the individual particles, but the 
symmetrized Kronecker product.) 

It is often argued that since we could follow the motion of each particle 
in classical mechanics, if we so chose, it must be possible to distinguish 
the states obtained from each other by interchange of identical particles. 
But this argument is invalid when only dynamical behavior is considered 
as in statistical physics. The canonical equations of motion are symmetric 
under the interchange of identical particles, and i f  in the initial state we 
cannot distinguish two states obtained by exchange of identical particles the 
indistinguishability propagates itself. If I claimed that during the instant 
you blinked your eyes I had carried out such an interchange, you would 
not be able to verify or refute my claim if the particles are truly identical. 

The Thermodynamic System 

Let us consider as a model of  a thermodynamic system a set of Nidentical 
particles in a volume V. The phase space is the equivalence class of points 
in a 6N-dimensional phase space. To make the entropy of the system 
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dimensionless we should be able to divide/z-space, which is the six-dimen- 
sional phase space associated with p and q of a single particle, into cells 
with a constant volume. This would lead to a division of the ),-space, the 
6N-dimensional phase space of N particles, into cells. We choose the 
constant/z-space volume to be h 3, where h has the dimensions of an action 
(Planck, 1932).]" Then the number of ways of assigning N particles with a 

t In statistical mechanics we need a phase volume measured in units of action. We 
must have a suitable number as the measure of the phase volume so that we can take its 
logarithm. For many purposes it does not matter what the precise value of the action 
constant is. In entropy per unit volume ofa Boltzmann gas it enters as an additive constant; 
the equation of state is unaffected by it, as are the specific heat, latent heat, etc. If the 
absolute entropy is measured we are in some difficulty, since no additive constants are 
permitted then in the entropy; we cannot change from h to h~, say. 

At this point, problems arise with respect to the Gibbs paradox and the Nernst heat 
theorem. Taking Gibbs's paradox, the entropy could not be made an extensive quantity 
without introducing some correction factor; that this is not automatically satisfied by 
classical statistical mechanics in the usual formulation is due to the fact that the particles 
are treated as identical but not indistinguishable. If we mix two volumes of a gas I and 
II, a particle from I is considered distinguishable from a particle from II, and hence 
there is more than twice the 'disorder' in mixing up the two volumes. 

At this point a fundamental choice must be made. Is there any increase in entropy for 
the case mentioned ? Does entropy increase on mixing of two identical volumes ? If 
the particles are 'identical' but 'distinguishable' it does increase; if they are 'identical' 
and 'indistinguishable' it does not increase. (Of course, if they are not 'identical' they are 
not 'indistinguishable', and the entropy certainly does increase!) Now, an entropy which 
increases when identical gases are mixed is not very good as a definition of a thermo- 
dynamic quantity. Thus if  the statistical entropy shouM coincide with (or, serve as) thermo- 
dynamic entropy, then the particles ought to be identical and indistinguishable. 

The 'resolution' of Boltzmann overcomes this difficulty, not by any fundamental 
change but by fiat; he does not have a natural unit for action, nor does he solve the 
problem of the Nernst heat theorem. The latter provides an absolute zero for entropy 
by strengthening the result 

T2 

Cv(T) dT S(T2)-  S(T~)= - T -  
,d 

T 1 

in the form 
T 

C~(T) S(T) = | - ~ - - a i  r ~  

0 

Given this strengthened form we can no longer change from h to hi, since such a change 
would change the absolute entropy. Now the question arises, which of the choices of 
h gives the correct (Nernst theorem) value ? Could we not use this to choose a numerical 
value for h ? 

The tragedy is that with the scheme proposed by Boltzmann, we cannot! This is 
because every value of h gives -~o for the entropy; no value of h is classically appropriate. 
If, however, we use the notion of indistinguishability and employ phase cells then, as 
T ~ 0, all the particles cluster into the lowest cell and the statistical phase space volume 
becomes I (not zero)for allcho&es of  h, and the entropy goes to zero. We have a 'scaling 
law' (law of corresponding states) which states that if h ~ hi = yh, then the entropy, 
fugacity and specific heat remain unchanged, provided T --~ T1 = yT and m ~ ml = ym, 
for other temperatures. 
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total energy E to these cells is to be calculated. Each cell may  be chosen to 
have a more  or less specified energy; moreover,  there will be many  levels 
with the same energy. I f  Ej denotes the energy levels for  the cells, gj  the 
number  o f  cells in/x-space with this value o f  energy, and nj the number  o f  
particles with the energy % then the distinct number  o f  ways o f  arriving at 
this distribution is given by 

(n~ + gj - 1) ! 
(1) 

where the particles have been assumed to be indistinguishable.t  
The maximizat ion o f  W(n) subject to the constraints 

nj = N ;  ~ nj %. = E 

is given by the distribution 

nj = g j [ -1  + z -1 exp (f ie) j ]  -1 (2) 

where z and/3  are two parameters determined in terms of  N and E. This 
is identical with the Bose-Einstein distribution (Bose, 1924) for a gas with 
fugacity z and temperature k/ft. Apart from the subdivision of the phase 
space into cells, no concepts of quantum theory have entered the derivation. 

I t  is c/ear that  the entropy of  the system calculated f rom this model  does 
behave as an extensive quantity. The entropy is given by 

{ / 3 % . - l o g z  log[l_zexp(_/3es)]} (3) 
S = k ~ g j j  Z_~ exp(/3e)j  - 1 

When  two volumes o f  a gas with the same fugacity and temperature are 
mixed, the degeneracies gj  simply add, so that  the entropies simply add. 
There is therefore no Gibbs 's  paradox (Gibbs, 1948). 

t 'Conventional' classical statistical mechanics involves equal a priori probability of 
the unsymmetrized 6N-dimensional phase space, which corresponds to equal probability 
for every distinctive set of occupation numbers in the/z-space, with all the particles being 
distinguishable. However, if we accept the group-theoretical argument for suitable 
irreducible representations of the Kronecker product space, only phase spaces with either 
single occupation of phase cells (Fermi statistics) or unlimited occupation of phase cells 
(Bose statistics) are allowed. In the symmetrical case the equal a priori probability 
hypothesis leads immediately to equal probability for every distinctive set of occupation 
numbers in the/z-space, with the particles being indistinguishable. The phase space so 
defined takes care of the factor l/N! traditionally introduced in Boltzmann statistics. 

From the above argument it is apparent that W(n) can be identified as the relative 
probability of the particular state. In the symmetrized single occupation case it leads to 
equal probability for those sets with the occupation numbers not exceeding 1. This 
leads to a relative probability 

and Fermi-Dirac statistics is retrieved. 
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Boltzmann Equation and Stimulated Emission 

Let  us now consider the stability of  the equil ibrium distribution (2) under  
collisions. Let  to( jk  -+ Ira) be the probabi l i ty  per  unit  t ime tha t  two isolated 
a toms in the cells j and k will go into the cells I and m. I f  these cells are 
already occupied, the physical transit ion probabi l i ty  will depend upon  
the occupat ion numbers  n j, nk, n~, nm. Hence the collisional rate of  change 
of  the distr ibution f u n c t i o n f ( n )  is given b y t  

a f = • {nj nk oJ(jk --> lm) •(nt) (a(nm) - nt nm oJ(lm -->jk) (o(nj) $(nk)} 
at c o l l i s i o n  

(4) 
where ~(n) is a funct ion yet to be specified. I t  is cus tomary  to take ~(n) = 1, 
but  this is not  warranted  as we shall see presently. Microscopic  reversibility 
implies 

to(tic ---> Ira) = oo( lm ---> j k ) 

and the equil ibrium is achieved when 

n j  n k .~- n t  nm (5) 

In  order  to obtain the equil ibrium distribution (2) we must  choose 

~(n) = 1 + n (6~1) 

In  other words,  the physical transit ion probabi l i ty  for  a transit ion f rom a 
cell with n particles is propor t iona l  to n, but  for  transit ion into a cell with 
n particles it is p ropor t iona l  to 1 + n. The te rm 'p ropor t iona l  to uni ty '  is the 
Claus ius -Bol tzmann te rm;  but  there is an addit ional  contr ibut ion propor -  
t ional  to n which corresponds to ' s t imulated emission' .  The  latter is con- 
sidered to be of  quan tum origin, bu t  we see here that  it can be derived purely 
classically and can be traced to the indistinguishability of  equivalent states. 

Consequences 

The proper  t rea tment  of  the phase space leads to the p h e n o m e n a  o f  
positive distance correlations (Uhlenbeck & Gropper ,  1932) and bunching 

t The derivation of equation (4) is independent of quantum theory. Essentially it 
involves the following assumptions: 

(1) The existence of a collision rate co. 
(2) The assumption that to obeys the principle of micro-reversibility. 
(3) The assumption that owing to correlations introduced by indistinguishability 

the occupation numbers in the final states influence the rate of change of f via 
multiplication of the first term on the right-hand side by Some function $(nz,nm), 
and the second by $(nj, nk). 

(4) An assumption of independence (the simplest!) implying that $ factorizes: 
that is, ~b(nz, nm) = ~(n,) ~(n,,). 

With these assumptions, the steady-state solution of (4) agrees with the equilibrium 
distribution (2) (obtained by a combinatorial argument) if and only if $(n) = n + 1. 

The choice of $(n) = n is ruled out because that would imply Of/Ot = 0 identically. 
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of  particles in phase cells. This may be understood as follows: when the 
phase space was (incorrectly !) identified with the entire 6N-dimensional 
space there were no distance correlations; each state was equally probable. 
But if the phase space is now identified with only the equivalence classes 
of  points, as formulated above, there is an added preference for states in 
which more and more particles are in the same cell in/z-space. This is 
reflected in the expression (1). Hence there is a preference for situations in 
which the particles tend to be bunched into cells in/z-space; that is, the 
probability for a state is larger when the occupation number (in the cells in 
/z-space) is uneven. Thus positive distance correlations are expected. 

Another consequence of the distribution (2) is that the non-interacting 
classical gas now has a second virial coefficient 

bz = 2 -5/2 (7) 

in dimensionless units. This is also tranditionally traced to the quantum 
nature of the particles, but is here seen to be derived from first principles of 
a classical gas. 

Another phenomenon of great interest is the approach of the gas to the 
absolute zero of temperature. Clearly, as the temperature of the system 
becomes lower, the lower energy group of phase cells would be preferred, 
until at last all the particles would cluster in the lowest energy cell (or cells). 
Since the phase cell has voume h 3 the lowest energy is of order 

(pO) 2 l /h3~ 2/3 - -  h 2 
2m Ymm \ V ]  - 2mV 2/3 m 60 (8) 

and this tends to zero with increasing V. The fugacity decreases as exp (-fie0) 
when fl --> co and a finite fraction of the particles end up in the lowest 
energy state (London, 1938; Einstein, 1925). The entropy decreases rapidly 
as the temperature decreases, until at last, at fl = 0% the entropy becomes 
equal to k log go, where go is the degeneracy of  the lowest energy state. If  
this is taken to be a unique state the entropy goes to zero in accordance 
with the Third Law of Thermodynamics (Nernst, 1906, 1918). 

Thus many of the results normally believed to be a consequence of 
quantum mechanics are seen to follow from classical mechanics provided 
the notion of  phase cells is introduced. If  we add Einstein's hypothesis of 
light quanta, i.e., that light consists of particles with energy e - hv, where 
h is Planck's constant and v is the frequency of light, we can deduce Planck's 
distribution law for the intensity of  blackbody radiation (Planck, 1900): 

8"B'I- '2 hi," 
JO(l")= C 3 e x p ( f l h v ) - I  (9) 

which is a specialization of  (2). Similarly, the Debye T3-1aw (Debye, 1912) 
of  the specific heat for a solid can be obtained if we introduce the notion of  
phonons with frequencies 0 < v  < v=ax and energies e = hr. 
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The photon equilibrium distribution (9) will remain steady in the 
presence of matter which can absorb and emit photons only if the emission 
process contains both spontaneous emission and stimulated emission 
contributions. To see this in more detail, let us consider an atomic species 
which collides with the photon; during this process the photon is absorbed 
and a different photon is emitted. By considerations analogous to the one 
employed in deriving (5) and (6) we deduce that the rate of emission into a 
phase cell with h photons is proportional to h + I, while the rate of absorp- 
tion from this state is proportional to h. The difference is to be attributed 
to the possibility of spontaneous emission. Our 'classical' theory includes 
both stimulated and spontaneous emission contributions, t 

We remark, in passing, that the introduction of phase cells automatically 
introduces the notion of zero-point energy, since the lowest energy phase 
cell still has a finite extension in energy and hence the average energy in the 
'ground state cell' is finite and non-zero. This conclusion was reached by 
Planck himself long before quantum mechanics was formulated (Planck, 
1932). A simple example is given by (8). 

The fluctuations in the number of photons can also be calculated on the 
basis of the formulation of a classical photon gas. If  hj is the occupation 
number of the group o fg  i phase cells, all with the same energy %., then one 
can show that the mean square of hj is 

<h~ 2) = (I + ~7 I) <h~> 2 + <hi> 
so that the variance is 

~i 2 = hi(1 + (hi~g j)) = h~ + hi~ 
gi 

The term (hi2/gj) may be associated with a wave noise and the term h i 
with the (Poisson-like) particle noise (Wolf & Mandel, 1965). These may 
be compared with the fluctuations calculated by Einstein (Einstein, 1909). 
The Hanbury Brown-Twiss effect (Hanbury Brown & Twiss, 1956, 1957a, b) 
is a direct consequence of such fluctuations. 

Undoubtedly, quantum mechanics govern the motion of atoms and 
subatomic particles. But the proper use of classical concepts can explain 
much of the behavior of matter in bulk that is relevant to statistical mechan- 
ics. The ultimate origin of the phase cells, and even of the particles and light 
quanta, is to be sought within a quantum-mechanical framework. But 
granted the existence of these, a proper application of classical statistical 
mechanics can lead to a satisfactory theory including many 'quantum' 
effects. 

Appendix 

Refinement of  Einstein's Derivation of  the Planck Distribution 
Einstein rederived the Planck distribution formula for blackbody 

radiation by considering the equilibrium between matter and radiation. 
t Compare this with the derivation in Einstein, A. (1917). Physikalische Zeitschrift, 

18, 121. 
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He argued as follows: If nl and n2 are the populations of the ground state 
and excited states of the atom and the energy density per unit frequency 
interval is p(v), then the number of transitions exciting the atoms is given 
by nlp(Vl2)Bl2, where hvl2 is excitation energy and B12 is a constant 
characterizing the atom. The reverse transitions contain stimulated transi- 
tions at the rate of n2p(v12)B21 and spontaneous transitions at the rate of 
n2A2~ per unit time. The constant A21 is related to B21 by the formula 

87"rhv 3 87rhv 3 
A21 = ~ "B21 = - - - ~  BI2 

Using the Boltzmann distribution 

n2/nl = exp (-hv/k T) 

Einstein deduces 
87rhv 3 

p(v)= c3[exp(hv/kT)_ 1] 

In this derivation matter and radiation are treated asymmetrically, the 
former obeying Boltzmann statistics. We could obtain a more satisfactory 
derivation by considering both the photons and the matter to behave as 
'classical' indistinguishable particles. For both species of objects the tran- 
sition rate has a stimulated and spontarieous contribution. Let us denote the 
number of photons of the appropriate frequency per phase cell by t~, while 
the number of atoms in the ground state and excited state per phase cell 
are denoted by n~ and hE. Then we get, by considering the equilibrium 
between absorption and emission of light, the equality 

hi(1 + n2)n2(t~ + 1) 

l~ ( l ~ n 2 )  -- l~ = l~ ( ~ )  

Comparing this with the conservation laws of energy and atoms 

we get 

Ez - E1 = hv = E 

nl + n2 = constant 

log 1 + ~ = -flhv 

nl = --fiE1 + tz log 1 + nl 

log I + n2 
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where/3 is a cons tan t  & p r o p o r t i o n a l i t y  and  eventual ly  identif ied with 1 /RT  
we ob ta in  

n = [exp ( / 3 h v ) -  1] -1 

Remember ing  tha t  there are (8~r/c 3) v z phase cells per  uni t  volume per  uni t  
frequency,  this yields the P lanck  d is t r ibut ion  fo rmula  and at  the same t ime 
yields the Bose-Eins te in  d is t r ibu t ion  for  the atoms.  
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